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1 Introduction

This deliverable reports results of the works carried on within WP7, in particular within
T7.1, for the formal definition of a multi-dimensional risk space able to characterize
autonomous agents, the environment in which they strive, and their possibly dynamic
relationship, so to endow such agents with a keen sensitivity to uncertainty and to the
risk of failure. We break-down such a multi-dimensional risk space into factors, classifying
the autonomous agent current state based on the severity and probability of undesired
outcomes (hazardous states). Therefore, we analyse how each of these factors relates to
the variables defining the state of a robot, to identify the main factors that will serve to
introduce a method for the quantification of the risk level.

The described methodology, based on a fuzzy definition of risk levels, outlines a general
way to characterize risk for autonomous agents working in unstructured and partially
unknown environments, which generalizes to most human-robot collaboration scenarios.
The proposed framework is also robust to the introduction of new risk factors.

To apply the outlined methodology to the concrete case study of the DARKO demo
scenario, we collect the potential hazards from the output of WP8 reported in D8.1 and
group the most relevant risks into categories. The identification of the various risk factors
leads to the definition of the dimensions of the multi-dimensional risk space. Then, an
analysis of the variables on which each individual risk source may depend leads to the
introduction of a fuzzy inference system to quantify the risk level in the particular case study.
At the end of each step, we show a comparison with what is prescribed by international
standards dealing with risk assessments and risk mitigation.

This work will serve as the main input for T7.2, which would implement a continuous
learning approach to identify the most suitable parameter values for the fuzzy inference
system proposed in this deliverable. The knowledge of the potential risks of the envi-
ronment and of the risk map, which will be produced by the union of this work with
the outcomes of T7.2, will therefore be used in T6.2 and T6.4 to implement safe and
risk-aware motion planning algorithms for mobile and wheeled robots and in T4.2 for safe
and risk-aware planning and control for manipulation. The developed risk map will also
be used in T7.3 to guide the optimization of tasks planning and temporal scheduling.

The rest of this document is organized as follows. Section 2 reports the general outline
of the proposed methodology. Section 3, briefly reports the definition of the demo scenario,
as defined in deliverable D8.1, on which we will perform the risk assessment operation.
Section 4 identifies the main risks involved in the demo scenario. Section 5 defines
the dynamic risk assessment metrics, formalizes the metrics to map the robot state into
the risk space, and defines a global risk function to represent the overall level of risk.
Finally, Section 6 concludes the report by showing the main results and discussing future
developments.

2 Methodology

This work aims to define the theoretical foundation of the DARKO approach for dynamic
risk management. To achieve this result, we consider the state-of-the-art by following the
steps of a risk management process.

Definition 1: According to Baloi and Price [3] risk is the likelihood of a detrimental
event occurring to the project. In the literature, there are other definitions of risk, but
there are several characteristics commonly found in all definitions of risk [4]:

• A risk is a future event that may or may not occur.
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• Risk must also be an uncertain event or condition that, if it occurs, has an effect on,
at least, one of the project objectives, such as scope, schedule, cost, or quality.

• The probability of the future event occurring must be greater than 0% but less than
100%. Future events that have a zero or 100% chance of occurrence are not risks.

• The impact or consequence of the future event must be unexpected or unplanned.

Normative ISO 31000 [9] provides general principles and guidelines for effective risk
management and it presents a general approach to risk management that may be applied
to various risks (financial, safety, and project risks). The main steps of a risk management
process are [15]:

• Risks identification: The process of determining which risks may affect the project
and documenting their characteristics.

• Risk assessment: The process of prioritizing risks for further analysis by assessing
and combining, generally, their probability of occurrence and impact.

• Risk response: The process of developing options and actions to enhance opportunities
and reduce threats to the project objectives.

• Risk monitoring and review: The process of implementing a risk response plan, track-
ing identified risks, monitoring residual risks, identifying new risks, and evaluating
the risk process effectiveness throughout the project.

These steps are preceded by the "Establish the context" step. In ISO 31000 establishing
the context means defining the purpose of the risk management process, defining the
organization’s objectives, and establishing the risk evaluation criteria.

This deliverable will deal with the first two points (risks identification and risks assess-
ment) for the DARKO case study (as described in D8.1), and it will outline the methodology
for creating a risk space whose factors depend on robot state variables. Figure 1 shows
the Australian Standard for Risk Management [1].

The EU norms on industrial machinery are contained in the European Machinery Direc-
tive 2006/42/EC. To comply with this regulation, ISO 12100 specifies basic terminology,
principles, and a methodology for achieving safety in the design of machinery. Procedures
are described for identifying hazards and estimating and evaluating risks during relevant
phases of the machine life cycle and for the elimination of hazards or the provision of
sufficient risk reduction [5]. According to ISO 12100, the actions to follow to implement
risk assessment (1-4) and risk reduction (5) are [5]:

1. Determine the limits of the machinery, which include the intended use and any
reasonably foreseeable misuse thereof.

2. Identify the hazards and associated hazardous situations.

3. Estimate the risk for each identified hazard and hazardous situation.

4. Evaluate the risk and take decisions about the need for risk reduction.

5. Eliminate the hazard or reduce the risk associated with the hazard by means of
protective measures.

Therefore, they are mostly equivalent to those in [1]. The "Determine the limits of the
machinery" step is slightly different from the "Establish the Context" step in ISO 31000
used in the risk management literature. "Determine the limits of the machinery" in ISO
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Figure 1: Risk management pipeline. The steps are: establishing the context of risk, identifying
risks, analyzing risks, evaluating risks, and monitoring and controlling risk events.

12100 instead aims to identify the use, space, and time limits in which the machine will
operate. This means specifying how the machine will be operated, and in which context.

In this work, we apply the risk management process to assess and monitor in real-time
the residual risks depending on the robot’s movement in a shared environment, relating to
the type-C norm for collaborative robots ISO/TS 15066 [8], ISO 10218-1,2 [6][7]. We
consider only the hazardous situations arising during the ordinary use phase of the robot
(and not for example the setting, testing, and maintenance phase for which a separate
specific risk assessment will be needed).

2.1 Context definition

The aim of our risk assessment it’s not to design safe machinery and to identify its limits,
since we focus on the residual risks during the DARKO application. Therefore, the aim
of this phase is to describe the context (the application) in which we need to identify
and assess the risk factors. To establish the context in which to perform the hazard
identification, we rely on the scenario described in D8.1. The objective that we want to
pursue is task success. For task success, we intend that the robot performs all the steps
described in D8.1, without colliding with any obstacle or human, not consuming more
than scheduled and not draining the battery, not arriving later than the scheduled time,
and not causing unnecessary stress to the human operator. Furthermore, the task can be
considered successful only if it’s not disruptive to the robot’s lifespan (e.g., excessive stress
on the actuators may cause long-term problems to the robot, and decrease the robot’s
lifespan).

In section 3 we dissect and describe the DARKO task, and we identify the robot use
limits in this context.
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2.2 Risks identification

The Collaborative robot safety specification ISO/TS 15066 [8] describes the concepts,
terminology, and detailed requirements of human-robot collaboration and complements
the traditional industrial robot safety standard ISO 10218-1,2 [6] [7]).

The purpose of these normative specifications is to guarantee human safety and they
include a list of significant hazards for collaborative robots (EN ISO 10218-2:2011, An-
nex A).

There are numerous strategies in the literature for quantifying the level of risk during
human-robot collaboration, but they focus only on the risk for the human operator [12].
In DARKO, we want to broaden this concept according to the risk management definition
of risk (Definition 1): we will also take care of the self-safety of systems, as about the
damages caused by a delay in the operation performed by the robot (for example in the
case of a manipulator that has to pick up objects from a conveyor belt). We will catalogue
the most relevant risk factors detected within the following families:

• Performance risks: Risks concerning the quality of the task execution. (e.g., excessive
power consumption leads to increased costs and fewer tasks that can be performed
in a charge cycle, and delay in fetching an object from a conveyor belt can cause the
assigned task to fail);

• External risks: Risks related to the damage that the movement of the robot can
cause to other agents involved in the tasks or near the robot (humans, obstacles), in
compliance with the ISO/TS 15066;

• Internal risks: Risks related to the damage that the robot movement can cause to
the robot itself (e.g., damage to the motors due to vibration or overheating, self-
collisions between the manipulator and the moving base that can result in damage
to the robot).

To identify the involved risks, a questionnaire was administered to the DARKO partners
to assess known operational risks in their respective activities. They were asked to report
and briefly describe the expected risks, and to enumerate all possible variables that can be
used to measure the level of risk. We aggregated the risks identified by the partners with
a list developed independently by UNIPI.

2.3 Risks assessment

Risk is measured using two parameters – risk probability and risk consequence [1]. Risk
probability (aka likelihood) indicates a chance of a risk event to occur, while risk conse-
quence (aka severity, or impact) represents an outcome generated from the risk event
one it occurs. We will, therefore, proceed by analysing the risks found by identifying the
variables on which probability and severity depend.

Every detected risk represents a “risk factor” in our multi-dimensional “risk space". The
risk level of each risk factor can be expressed quantitatively by combining the probability
that the hazardous event occurs and its severity [15, 1]. In the literature, a useful technique
that is often used for risk assessment is probability and impact grids: risk events are
represented on a grid consisting of probability on one axis and severity on the other. To
map probability and severity to a scale that quantifies the risk level, we use a Takagi-
Sugeno-Kang fuzzy inference system. In this way, the map on the risk scale is continuous
(fig. 3). We defined five levels for probability (Almost Impossible, Low, Medium, High,
Almost certain), and four for severity (Minor, Moderate, Severe, Catastrophic). We chose
trapezoidal membership functions and a structure-oriented approach to generate the fuzzy
rules.
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Figure 2: Fuzzy rules to map probability and severity to the risk level value

For each risk factor, the risk level span between 0 and 6, resulting from the fuzzy rules
shown in fig. 2. To normalize the severity levels on a scale of 0 to 1, we assign 0 to the
“minor” level, 0.33 to the “moderate” level, 0.67 to the “severe” level, and finally 1 to the
“catastrophic” level.

The probability is the likelihood that the risk occurs. As a consequence, it has the
same definition for all hazardous events. On the other hand, severity will have different
definitions for each risk. However, the idea is to give a generic definition for each identified
degree of severity (minor, moderate, severe, catastrophic), and then decline it for each
risk according to its specific characteristics.

We will therefore have that the impact of the occurrence of risk will be:

• Minor: Minor damage, resulting in no long-term problems.

• Moderate: Damage that has a major immediate impact, like the task failure, but does
not result in long-term effects.

• Severe: Damage that has a major impact that goes to permanent damages (for the
robot or the environment), or involves a plot event of minor medical significance to
the human operator.

• Catastrophic: Damage that involves major medical issues for the human operator.

To calculate probability and severity values we can still use a fuzzy inference system
from the variables that link risk to robot state, or, when available, use other types of
assessment (e.g., use more precise metrics for collision risks).

Finally, we propose a global risk index to dynamically quantify the overall level of risk
in the system.

2.4 Normative background for human safety

According to ISO 10218-1,2 and ISO/TS 15066, there are four types of collaborative
operations [8]:

• Safety-rated monitored stop: in this scenario, the robot is stopped when there is an
operator in the collaborative workspace.

6



H2020-ICT-2020-2: 101017274 DARKO Deliverable D7.1

Figure 3: Risk level map from probability and severity values

• Hand guiding: in this case, the robot moves only through direct input from the
operator.

• Speed and Separation Monitoring (SSM): In this scenario, the robot and the operator
share the same workspace. The risk is reduced by only allowing the robot to move
if the separation distance between the robot and the human is greater than the
distance required to stop the robot completely.

• Power and Force Limiting (PFL) by inherent design or control: In this case, non-zero
speed collisions are possible, but the robot can only impart limited static and dynamic
forces, resulting in harmless impacts.

SSM and PFL are considered alternative methods, and the choice between one and the
other is at the discretion of the person conducting the risk assessment. However, PFL does
not depend on the distance between the robot and the human operator, and SSM is overly
conservative when such distance is small.

So in the state of the art have been proposed strategies to adopt PFL near the human
operator, and SSM when the distance increases enough, in order to achieve stronger
performances [13]. SSM depends on the estimation of the relative distance and velocity, as
well as the current needed breaking time and measurement uncertainty in that particular
environmental conditions and robot configuration. SSM prevents the collision to happen.
PFL, instead, does not guarantee the absence of collisions, but imposes maximum energy
transferred during the impact, so, we can see it as a way to reduce the severity part of the
collision risk.

To assess the impact severity, in DARKO we can benefit from the extensive injury
database collected by TUM. Furthermore, TUM also developed a Safe Motion Unit (SMU)
method [10] to define the maximum safe velocity depending on the manipulator’s reflective
mass, contact geometry, and human body part involved. The SMU controller, that derives
the maximum speed, works with safety maps derived with a data-driven experimental
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approach. On the other hand, PFL relates force/pressure limits (1cm2 contact area) to
thresholds in the mass/velocity plane via a simplified contact model, and so there is not a
direct connection with experimental observed human injuries [14].

With our approach we will compute a risk value for human safety, that is the combina-
tion of the probability that the robot cannot brake in time to avoid the collision (related
to the SSM), and its severity (related to the PFL/SMU guideline). In section 5.5 we will
show how this approach compared to the guidelines in ISO/TS 15066.

We are currently monitoring the release of the new American standard for autonomous
mobile robots ANSI RIA R15.08 [2]. At the time of writing, only part I (Requirements
for the Industrial Mobile Robot) of the standard is available, and we believe that part II
and III will be particularly interesting for DARKO application, i.e., IMR Type C (AGV &
industrial manipulator).

3 Establishment of the context for the DARKO scenario

The DARKO demo scenario is used as a standard use case for identifying typical hazards
and their associated risks for the creation of the risk space. This scenario, motivated by
the workflow at Bosch Siemens Hausgeräte (BSH Home Appliances group or BSH) and
other use cases in agile production, is described in detail in D8.1. The demonstration
will be performed at ARENA2036, a multidisciplinary research campus based in Stuttgart
(Germany). This will be a near real environment where we are not limited to a single
end-user site (which could lead to a kind of “overfitting” the solution to one specific user
in a real environment). The robot that will be used in the DARKO scenario consists of the
integrated mobile platform selected in T1.1, and the new elastic manipulator that will be
developed in T1.3.

As illustrated in D8.1, the robot will receive an order, which is a list of objects and
quantities. Items to be picked will be stored in boxes or trays on slanted shelves, and they
will have to be placed in trays for further transport on a conveyor belt. Once all the objects
in the order are in the tray, the order will be fulfilled.

In this deliverable, we will analyse the risks arising from the hazards to which the
robot, the external world (humans, other vehicles, environment) or the task performances
may be exposed during the accomplishment of the task.

The fulfilment of the task consists of the following steps (from D8.1):

1. Go to the right shelf containing box A. The robot employs a vehicle safe motion unit
[T6.4] to adapt velocities within human-safe limits while carrying out the motion
plans. This unit is based on human pose estimation [T2.5] and motion prediction
[T5.1]. Furthermore, local modifications to the robot’s course due to the presence
of nearby people are made using multi-agent interactions [T5.3]. The robot uses a
projector to transmit visual information about its planning and perception onto the
ground and anthropomorphic signalling, which uses a miniature humanoid robot
installed on a movable platform to demonstrate the robot’s intentions using head
and hand gestures [T5.2].

2. Locate the box and pick up the desired item. The planning and control system for
picking [T4.1] makes use of variable stiffness actuation and an elastic manipulator
with spring energy storage [T1.2, T1.3] to maximize the success rate and energy
efficiency of manipulation. Motion planning and control of the manipulator further
takes into account full-body people tracking [T2.5] and a safe motion unit [T4.2]
for reaching the best compromise between joint speeds and human safety.
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3. Drive to tray B to deliver the object. While navigating to B, the same modules for
human-aware and risk-aware navigation and intention communication are active as
in step 1.

4. When approaching B, the robot may choose to throw [T4.4] the object into the target
tray or to place the object directly in the tray, if the throw failure risk is too high.

The risk computation will benefit from the online assessment of an estimate of the
quality of the environment map T3.4 performed during and after the construction of the
initial map. The robot also constructs and revises a “map of dynamics” T3.3 in which
spatio-temporal patterns of human motion are represented.

We will not consider the risks during the construction of the initial map, as in this
phase the robot will not work with the risk-aware motion planning module activated.

To relate to ISO 12100 we specify below the use, time, space, and other limits of the
DARKO robots in the described task execution:

• Use limits: The different machine operating modes are described above (a navigation
phase (stages 1 and 3), a picking and place phase (stages 2 and 4 if the system
decides to place the object directly), and a throwing phase (stage 4)). In contrast
to ISO 12100, the purpose of this deliverable is only to consider the regular use of
the robots. So, we will not consider the interventions required by maintenance and
machine repair.

The machinery would be used in an industrial environment, sharing its workspace
with trained operators, trainees, and apprentices.

The robot will communicate its intents and will predict human motion and intents
with the methods developed in T5.2 and T5.1.

• Space limits: The robot and the human operator will share the same workspace and
they will move at a close distance. The robot and the human operator should not
touch each other in any part of the task.

The robot is a mobile manipulator so it could reach any workspace location larger
than 1 meter (the Robotnik mobile platform, selected in T1.1, is wide 980 mm). The
maximum reachable height is 2 meters.

• Time limits: The robot will need to perform stops to go to the recharge station and
recharge its battery.

• Other limits: According to constructors the Robotnik mobile platform has a tempera-
ture range between 0 and 50°C.

4 Risks identification for the DARKO scenario

In accordance with the task stages defined in the previous section, we will study the risks
involved during the navigation phase (stages 1 and 3), during the picking and placing
phase (stages 2 and 4 if the system decides to place the object directly), and during the
throwing phase (stage 4).

Tables in figs. 4 to 6, summarize the risks identified, respectively, in the navigation,
picking, and throwing stage, dividing them into the families set out in the methodology
section of this report (performance, external, and internal risks).
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4.1 Risks during the navigation phase

In this phase, the mobile base moves the robot to reach the right shelf or to deliver the
items. The manipulator’s joints are assumed fixed throughout the process.

Table 1 shows the risks identified during the navigation phase. A brief description of
the risk is given in the second column. The third column indicates whether the risk will
need to be taken into account by the risk-aware motion planning algorithms that will be
developed in T6.2 and T6.4. The fourth column indicates whether the risk will need to be
taken into account by the operational scheduling module in T7.3.

The goal of this part of the task is to arrive at a fixed point. The first risk we have to
take into account is hence not reaching the final destination because, for example, the
mobile robot’s battery does not have enough charge. We then have a risk of delay, i.e. if
the robot fails to meet the deadline to complete the task, which will have a varying severity
depending on the application (e.g., the impact will be greater if an item were fetched from
a conveyor belt and this task is not achieved on time, than if it was fetched from a fixed
shelf). Then all the risk factors related to the danger of collisions with fixed obstacles,
moving obstacles, and human operators, need special attention.

In this regard, solutions will be implemented in T5.1 to predict the behaviour of the
human operator. During the motion planning phase, predicted trajectories are taken
into account, such that the robot can avoid dense areas, potentially switching to a route
following a different homotopy class (e.g. a parallel corridor) [16].

At the same time, using Maps of Dynamics for Global Motion Planning could help the
robot avoid dense areas [17] and go along the flow [18], rather than against it, leading
to more intelligent robot behaviour perception, reduced obstruction and collision risks.
However, it should be kept in mind that the human might take an unexpected sudden action
(e.g., she/he turns around quickly and comes back because she/he forgot something).
Therefore, we introduce a risk to evaluate whether the motion prediction algorithms are
proving effective at that moment. In contrast, methods are proposed in T5.2 to inform the
operator about the robot’s motion intentions. If the robot is moving with a non-smooth
trajectory, with continuous changes in direction, these methods may be ineffective. Having
non-smooth robot trajectories could also lead to high energy consumption and the feeling
of unsafe interaction on the part of the human operator.

However, it should be also taken into account perception-related risks, as for instance
a human not being detected at all or some of its body joints being detected at the wrong
location, e.g. due to strong occlusion by other obstacles/objects in the environment or
the onboard manipulator, adverse lighting conditions, or a neural network overfitting to a
certain environment and performing much worse on unseen environments.

The risk of the robot deviating from the planned path because of an incorrect estimate
of its current position, should be also taken into account. In T3.4 we are developing a
“localization risk map” that the motion planner can use to actively avoid areas in which
there is a higher risk of low localization accuracy.

The operation of the sensors should then be monitored, checking for interference or
pieces of carried objects that end on the sensor, precluding sensing.

Finally, levels of motor overheating, system vibration, and power consumption levels
during motion need to be monitored.

4.2 Risks during the picking and placing phase

In this phase, the mobile base is supposed fixed, and the robotic arm performs the pick (or
place) operation. The identified risks are reported in table 2.

In this case, some risks will depend on variables expressed in the task space, others on
the joint variables of the manipulator. As in the previous phase, we will have the risk of
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Table 1: Identified risks during the navigation phase
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Table 2: Identified risks during the picking and placing phase

12



H2020-ICT-2020-2: 101017274 DARKO Deliverable D7.1

not reaching the target point. However, in this case, the risk is related to arriving at the
desired final configuration with the necessary precision to execute a performant grasp.

The risk factors of delay and not smooth trajectory are the same as in the navigation
phase, but related to end-effector (EE) trajectory. Collision risk factors will be evaluated,
considering the EE and other points of interest (POI) along the manipulator coordinates in
the task space. The grasp failure risk factor expresses the risk that grasping the object will
fail or that the item will fall during handling due to an underperforming grasping position
or a misperception of sensors because of sensor occlusion or adverse light conditions that
do not allow the correct detection or localization of the shelves, the storage bins as well as
the objects inside them and so on.

When the manipulator moves, we should consider the risk of self-collisions both
between the EE and the mobile base and between the EE and some selected POIs along
the manipulator. It should also be considered that the carried object increases the size of
the EE.

The blocked joints risk factor is related to the manipulability index of the joints’
configuration. A low manipulability decreases the manipulator’s dexterity to deviate, if
necessary, from the predefined path to avoid a collision with a moving entity. Overheating
and vibrations risks have the same definition as in the navigation stage, but referred to the
joints’ actuators. Excessive energy consumption risk in this phase relates to the effective
usage of the stored energy in the elastic actuator system developed in T1.2 and T1.5.

4.3 Risks during the throwing phase

Throwing failure may happen if the thrown item misses the target, or if it collides against
something during the in-flight trajectory. Therefore, we will need to evaluate the distance
from the fire line and the planned intentions of the humans, and the obstacles around.

Throw success is strictly linked to the grip the manipulator can grasp the object. Only
with a performant grip, the manipulator can transmit to the object the desired velocity
and flying direction to the object.

In this phase, the manipulator moves to reach the best throwing configuration. Conse-
quently, we will have the risks already identified for the pick and place phase: the risk
of self-collisions, blocked joints, vibrations generated by the manipulator actuators, the
possible excessive energy consumption made by the elastic actuators, as well as possible
misperception of the target tray in terms of position/orientation and velocity (if the tray is
on a conveyor belt).

As in the other phases, table 3 reports the list of the identified risk factors.

4.4 Normative comparison – risk factors identification

We compare here briefly the detected risk factors with the list of the significant hazards
presented in Annex A of the ISO 10218-2 [7] and Annex A of the ANSI/RIA R15.08-1-2020
[2]. We report only the hazards that apply to the robot movement within the context
definition described in section 3. Furthermore, we don’t consider the hazards associated
with risks to be minimized during the design phase, and with risks to be minimized through
operators training and safety rules independent from robot’s motion (i.e., loose clothing,
long hair). In table 4 we report the relevant hazards identified in the normative, the
movement phase in which the hazard is present, and the correspondent identified risk
factors in DARKO for that hazard.
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Table 3: Identified risks during the throwing phase
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Figure 4: Risks during navigation - Classification

Figure 5: Risks during pick and place - Classification

Figure 6: Risks during the throwing phase - Classification
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Table 4: Comparison Normative hazards - Risk factors
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5 Risks assessment for the DARKO scenario

As described in the methodology section, to assess risk values we compute their probability
of occurrence and their impact, and we use these variables as inputs for a fuzzy inference
system that yields the risk level according to the rules in fig. 2. To compute probability (or
severity) for each risk, we propose another fuzzy inference system. This system would
have as inputs the variables on which the probability (or severity) of the risk depends. The
output will be the sought-after value of probability or severity, which will then enter the
risk level inference system, thus creating a fuzzy tree. However, if a more accurate metric
to quantify probability or severity for a specific risk is available, the obtained value can be
used directly in the risk level inference system. This approach allows a single framework
with heterogeneous metrics.

Not all risks have the same maximum severity. Colliding with a human at high speeds
is far more disastrous than having non-smooth trajectories. In tables 5 to 7 a definition of
when that risk assumes that value of severity is reported. The missing definitions in the
tables indicate that risk factors cannot take on that level of severity.

The following sections group the risks identified in the three phases of the task into
performance, external and internal risks, going on to expose which variables each risk
depends on. If risks are common to multiple phases, it will be specified whether the
calculation metrics (and the variables on which the risk depends) are the same for all
phases, or whether there are variations.

5.1 Performance risks

The table 8 reports the variables on which the values of probability and severity for each
performance risk depend.

Not reaching the target point in the navigation phase because the robot is out of charge
is linked with the battery state of charge and with the distance to the target. The robot
could fail in reaching the target point also due to a localization problem: the sensor’s
coverage in the area or the measurement noise is such that there is no guarantee that the
robot will reach the endpoint with the required accuracy. This event would be evaluated in
the localization failure risk. Its probability would depend on an index, whose values range
from 0 to 1, indicating the probability of having low accuracy at that point based on the
localization risk map developed in T3.4. Its severity will depend on an index (spanning
from 0 to 1) assessing how much precision the current task requires, and on the obstacle
density in the area (lower accuracy increases the risk of collisions). A collision could also
cause the target not to be reached, but this situation falls under collision risk evaluation.
For the manipulation stage, we have the risk of not reaching the target point with the
desired precision, which could lead to grasping failure. To minimize this risk, we want
to prefer trajectories with low EE velocities near the final grasping position. Severity
would depend on the needed grasp precision index, which would span between 0 and 1,
according to the type of object to be manipulated (items that are more difficult to catch
will require greater precision), and the planned actions after the grasp (if the item has to
be thrown after the picking, a higher precision would be required).

The delay risk metric is the same for all the task stages. Probability would depend on
the rate between the residual time before the deadline and the estimated time needed to
complete the task with the current or predicted human density in the area. Severity, as
underlined in table 5, is defined by the delay estimation value (which would depend on
the rate between residual time and estimated remaining needed time) and by a parameter
representing the time-critical nature of the specific task. This parameter spans between 0
(no time-critical application) and 1 (time-critical application, e.g. picking an object from a
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Table 5: Severity definitions, performance risks
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Table 6: Severity definitions, external risks
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Table 7: Severity definitions, internal risks
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Table 8: Variables from which to compute the probability and severity for each performance
risk
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conveyor belt).
The risk of non-smooth trajectories is related to the operator’s perception of safe

collaborative interaction. This risk probability depends on how smooth the mobile base/EE
trajectory is, namely on medium acceleration and jerk trajectory values. The severity
will also consider the total accumulated time in which the jerks of the robot trajectory
overshoot a certain threshold.

The probability of the grasp failure risk factor will be evaluated considering a grip
success index spanning between 0 and 1, depending on the approaching manipulator’s
configuration, and the jerk values during the grasping phase, which may cause vibrations
and a consequent increased risk that the object falls. The severity will depend on the type
of object manipulated. We define an index between 0 (light, cheap, not breakable objects)
and 1 (fragile, expensive objects).

The likelihood of missing the target during the throwing phase will be determined
by the distance from the target at which the robot performs the throw and by a grip
performance index, spanning between 0 and 1, that assesses how the executed grasp can
transmit to the manipulated object the desired motion direction and velocity. Its severity
will depend on the time left to complete the task. The robot is allowed to throw only
resistant, not breakable objects, so there is no risk that the thrown item breaks.

The probability of miscommunication between humans and robots will be assessed
considering the values of not predicted human accelerations by the motion prediction
module and on an index depending on If the operator’s gaze is in agreement with the
motion prediction estimated. Severity would depend on the distance between the robot
and the operator when the unforeseen movement happens (the shorter the distance, the
more likely it is that the robot will fail to change its planned route in time, thus resulting
in a necessary slowdown or forced stop for safety reasons).

On the other hand, the chance of miscommunication between the robot and humans
would depend on the magnitude of the robot’s acceleration, and on a parameter between
0 and 1 which expresses the operator’s ability to see the systems for communicating the
robot’s motion intent (0 the operator’s back is turned, 1 the operator’s head is directed
in the direction of the robot). Again, the severity of the risk factor will depend on the
distance between the operator and the robot and the direction of the robot’s planned path
(the closer they are, the more the robot will have to slow down to ensure standard safety
conditions).

5.2 External risks

The table 9 reports the variables on which the probability and the severity of each external
risk depend.

The probability of collisions with fixed objects should be related to the distance and
speed of the robot in the direction of the obstacle. Sensor uncertainty should also be
considered. For collisions with moving obstacles and with humans, it should be also taken
into account the evolution of the distance predicted by the motion prediction module, over
a fixed time horizon.

During the navigation and pick-and-place phases, the probability of collision for mobile
obstacles and human operators will be the same, but for the same distance and relative
speed conditions, the severity of human collisions will be higher, resulting in a higher risk
factor value. The severity will depend on the robot velocity, on a parameter between 0
and 1 related to the task application (e.g., 1 if the robot is handling a dangerous sharp
item), and on the robot’s reflected mass. This quantity represents the mass perceived
during a collision [11], and it is dependent on the Jacobian matrix associated with the
impact location (J(q)) and the mass matrix M(q), where q denotes the joint configurations
for a serial manipulator. Mansfeld et al. [14] propose a map that captures human injury
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Table 9: Variables from which to compute the probability and severity for each external risk
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Table 10: Variables from which to compute the probability and severity for each internal risk

occurrences and robot inherent global or task-dependent safety properties in a unified
manner, considering reflected mass and maximum velocity.

The human motion prediction module, which will be developed in T5.1, will also be
employed to compute the risk of having the vehicle surrounded by a large crowd of people,
to identify which areas will be more densely occupied. An index, spanning between 0 and
1, will express the maximum predicted human density in an area up to 3 meters from the
proposed planned path. The severity would depend on the margin of time against the
deadline by following the currently planned trajectory.

During the throwing phase, the distance to the target will also come into play. In fact,
the longer the object’s flight lasts, the farther the operator or moving obstacle will have to
be from the line of fire to avoid collisions. Severity, on the other hand, should take into
account a parameter (between 0 and 1) indicating the danger of the thrown object in the
event of a collision (weight, presence of sharp edges, material) and the speed with which
the object is thrown.

5.3 Internal risks

The table 10 reports the variables on which the probability and the severity of each internal
risk depend.

The chance of overheating is linked to the room temperature and the motor torque
values. This risk severity would be related to the motor’s temperature and the accumulated
time in which the motor exceeds the design temperature.

Vibration risk is strictly related to the joints’ jerks values. Prolonged exposure to
vibration can cause premature deterioration of manipulator actuators, so the severity level
will be computed starting from the accumulated time during the task operation on which
the jerks’ values overshoot a set threshold proposed at 60% of the manipulator’s actuators
limits.

The severity of excessive energy consumption will be assessed by comparing the actual
operational cost with the one estimated. The operational cost would be assessed by
computing or estimating the energy consumed during the task. For the navigation phase,
the probability is linked to the length of the planned travel distance, and to the average

24



H2020-ICT-2020-2: 101017274 DARKO Deliverable D7.1

Figure 7: Delay risk level assessment using fuzzy logic. Probability depends on the rate
between the estimated time to accomplish the task and the residual time before the deadline,
and on the parameter representing the estimated human density in the area near the selected
path. Severity depends on the same rate and on a parameter representing how much the
application is time critical.

positive acceleration value. For the manipulation phase, the consumed energy, instead, is
linked to the joints’ torque values and to the effective exploitation of the elastic nature of
the actuators.

The self-collisions risk probability would depend on the distance and relative velocity
between the EE and a number of points of interest along the manipulator, plus reachable
representative points of the moving base. Finally, the blocked joints risk factor is strictly
linked to the Yoshikawa manipulability index, depending on the manipulator’s joints
configuration.

5.4 From identified variables to risk values

To map the identified variables into the discussed probability and severity levels, we can
use another Takagi-Sugeno fuzzy inference system. An example of the proposed pipeline
for the delay risk factor assessment is reported in fig. 7. Task 7.2 would take care of
developing a continuous learning approach to assess the parameters of the membership
functions and the fuzzy rules with a data-driven approach. Alternatively, in T7.2 different
mapping methodologies can be studied, even if only for some risks: the output values
obtained for probability and severity levels will then be equally given as input to the fuzzy
inference system to quantify the level of the risk factor.

Fig. 8 shows the trends in the values of collision and non-smooth trajectory risks
along three trajectories performed by a 7 DoF PANDA by Franka Emika. An obstacle is
represented in the scene as a dark sphere.

Although the probability of collision risks is also manageable with a fuzzy inference
system from the identified variables, we also study another approach to be able to use
sensor uncertainty explicitly and quantitatively. We assume both the dynamic entity
(human or obstacle) and the robot are characterized by position uncertainty having a
Gaussian probability density function, we proceed as follows:
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Figure 8: Visualization of the trends in the values of collision and non-smooth trajectory risks
along three different trajectories.

• The probability with which the robot and the dynamic entity occupy a cell is plotted
on the grid map representing the workspace.

• This occupancy probability is evaluated for all cells in the ellipse, describing the
position uncertainty, both at the current time instant and at a predetermined number
of prediction steps.

To compute the occupancy probability of a cell, the Gaussian probability density
function characterizing the uncertainty of the position variable along each axis is discretized
into multiples of its standard deviationσ. The probability with which each position variable
takes a value belonging to an interval [k ∗σ, (k+1) ∗σ] with k spanning between 0 and 3
was determined from the distance between the coordinate of the centre of the considered
cell and the corresponding component of the robot’s position vector. The probability of
occupying a cell is calculated as the joint of the probabilities of taking a value along each
axis. The same procedure is carried out for the dynamic entity. Next, we consider the
kinematic model of the robot and the dynamic obstacles to predicting their future position
distributions over time. The probability with which the robot and dynamic entity occupy
each of the cells inside the ellipse, gradually increasing as time increases, is calculated, for
each step in the prediction interval. The collision hazard occurs when the robot and the
dynamic entity occupy the same cell, and it is calculated as the joint of their occupancy
probabilities.

The total probability that there is a collision will be 1−
∏

pcell is free.
Fig. 9 shows the simulation of a mobile base approaching an obstacle (a,b,c). The

pink regions correspond to the positions that the robot and the obstacle, respectively, take
with a higher probability, while the blue regions are the positions that are occupied by the
robot and the obstacle with a lower probability. The collision risk probability increases
as the distance between the robot and the obstacle decreases, and it is represented by an
increase in the height of the green markers (d,e).

5.5 Normative comparison – human safety

For the human safety risk factor, it’s important to compare the results found applying the
methodology described in this deliverable with the limits prescribed in ISO/TS 15066. As
mentioned in section 2.4, the SSM method imposes that the separation distance is greater
than the distance required to stop the robot, and it is related to the probability that the
collision happens. So, for this risk factor, we consider as the probability the likelihood that
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Figure 9: Visualization of collision risk probability using sensors uncertainty

the SSM criterium is not respected (so that the relative distance between the human and
the robot is less than the distance the robot needs to stop). For the sake of simplicity, we
consider the version used by Lucci et al. [13] where the SSM formulation is simplified
as vSSM = d/Ts, where vSSM is the maximum allowed relative velocity between the robot
and the human operator, d is the relative distance, and Ts is the robot’s stopping time. For
this example, we suppose the stopping time to be fixed at 0.5s and the relative distance
to be modeled having a Gaussian distribution of variance σ = 0.1. In fig. 10 is reported
the probability that the SSM criteria is satisfied (namely that the actual distance is higher
than the required distance by SSM), for every combination of measured relative distance
and relative velocity.

The PFL/SMU methods instead relate to the severity of the impact on the human
operator. For this comparison example we consider as a variable the ratio of the relative
speed to the limiting velocity that can be obtained by applying the SMU or PFL methodology.
A simple type I Sugeno fuzzy inference system maps the value of this ratio, to the severity
scale defined in section 2.3. Assuming all other variables fixed the severity values for
the combination of velocity and distance are reported in fig. 11. Note that the velocity
limit computed with PFL/SMU will not depend on the distance between the robot and the
human (it will depend, instead on the reflective mass, type of contact, etc.), but we use
the same axis of fig. 10, to then have a clear visualization of the combination of probability
and severity in the same conditions.

Finally, Fig. 12 shows, for every combination of measured distance/relative velocity,
the correspondent risk level obtained by the fuzzy logic system combining probability
and severity from figures 10 and 11 according to the rules in fig. 2. Figures 10, 11, 12
represent the same case study. So, to visualize the corresponding levels of probability
and severity to the points of the map in fig. 12, please refer to figures 10 and 11. We
can notice from fig. 12 that the obtained risk level is very low when both SSM and PFL
velocity requirements are satisfied. When neither constraint is fulfilled the risk value is
very high, except when the velocity value is still near the intersection of the two limits.
Indeed, in this case, even if neither regulations apply, the action of stopping the robot
could eventually result in a collision event (SSM not guaranteed) but will slow the robot’s
velocity to a threshold for which the PFL is fulfilled (for the example with the method
proposed in [13]). When only one of SSM and PFL is respected the computed risk value
may vary from low to high values. In particular, we can observe that when the velocity is
too high with respect to the limit defined by the severity component the risk level is high
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Figure 10: Probability that the relative distance is greater than the one prescribed by the SSM
criterion, considering a stopping time of 0.5 s and the measured relative distance uncertainty
having a Gaussian distribution with σ = 0.1

Figure 11: Severity level considering as a variable the ratio of the relative speed to the limiting
velocity that can be obtained by applying the SMU or PFL methodology. Note that the severity
component does not depend on the collision probability; it only refers to the consequences if a
collision occurs. So the severity level is not related to the distance between the robot and the
operator.
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Figure 12: Visualization of risk levels as the distance and relative velocity values vary. Velocity
limits prescribed by SSM (pink) and PFL (black).

even if the probability is very low. This is a desired behavior because there is a chance that
a high measured distance may result from a blunder (i.e., the sensor fails to recognize
the human operator), and so moving an autonomous robot in a shared environment at a
speed that may result in catastrophic outcomes is to be carefully monitored.

5.6 Global risk factor

We have so far defined the level of individual risk factors. To conclude, we propose an
overall risk index that can be an expression of the overall risk status of the system. A simple
sum of the risk indices would not distinguish, for example, between pairs (2,2) and (0,4),
so a risk factor at level 4, therefore dangerous, would not be adequately avoided. In the
same way, taking as a function an infinite norm of the risk indices would not distinguish
between a sequence of risk indices (0, 1, 0, 2, 0 ...) and one (2, 2, 2, 2 ...), with the former
leading to a better trajectory. To overcome these issues, we propose to express the global
risk factor as the RealSoftMax function of the concurrent risk factors.

Global Risk Index= log(
∑

erisk factors)

Minimizing previous overall risk index (or partial indexes where only groups of risks
are considered) will provide a strategy for performing risk-aware motion planning in T6.2,
T6.4, and T4.2.

6 Conclusions

This document formalizes the “Risk Space" concept, a multidimensional space of Risk
Factors, each one combining the probability that that specific hazardous event happens
and its impact.
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We have identified the main risk factors from the concrete case study of the DARKO
demo scenario, illustrated in D8.1. Each risk factor was then analysed, underlining the
state variables and the parameters on which each risk depends. Then, we have proposed a
method to assess the risk probability and severity from the state variables and parameters
values and a map to pass from the severity and probability values to a final risk factor level,
spanning from 0 to 6. This report ends with the proposal of a global risk index, which is
defined as the real soft max of all the risk factors and represents the total risk state of the
system.
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